Course Syllabus

1.	Course title	Network System Security
2.	Course number	1901908
3.	Credit hours (theory, practical)	3
	Contact hours (theory, practical)	3
4.	Prerequisites/corequisites	N/A
5.	Program title	Computer Science
6.	Year of study and semester (s)	
7.	Final Qualification	PhD degree
8.	Other department (s) involved in teaching the course	None
9.	Language of Instruction	English
10.	Date of production/revision	February 21, 2023
11.	Required/ Elective	Elective

12. Course Coordinator:

Dr. Khair Eddin Sabri Office numbers: KASIT 117, Phone number: 22557 Office hours: Mon: 11:30-12:30 Tue, Thursday: 11:30 – 12:30, Email addresses: <u>k.sabri@ju.edu.jo</u>

13. Other instructors:

N/A

14. Course Description:

Topics discussed in this course include: attacks on networked systems, tools and techniques for detection and protection against attacks including firewalls and intrusion detection and protection systems, authentication and identification in distributed systems, cryptographic protocols for IP networks, security protocols for emerging networks and technologies, privacy enhancing communication. Legal and ethical issues will be introduced as necessary. Research papers of high impact published recently in the literature will be provided as reading assignments.

15. Course aims and outcomes:

Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to ...

- 1. Basic Understanding of Security: Symmetric encryption, Public Key encryption, Encryption mode, hash functions, PKI, Web security, Authorization, and Authentication.
- 2. Number theory and algebraic structures
- 3. Analyze and design encryption algorithms
- 4. Cryptographic protocols analysis and design
- 5. Apply AI and machine learning to cybersecurity
- 6. Design a system based on blockchain.
- 7. Read and analyze security papers.
- 8. Present a work related to security.

16. Topic Outline and Schedule:

Торіс	Week	ILO	Teaching methods and evaluation
Computer and	1	1	T: Lecture
Network Security	20.0		L: Reading [1]
Concepts	28-2		A: Midterm, Final
Symmetric Encryption	2	1, 2, 3, 7	T: Lecture and discussion
Analysis and Design			L: Reading [1] and research
of Encryption	7-3		papers
Algorithms			A: Midterm, Final and discussion
Encryption Mode			
Algebraic Structures			
and Number Theory			
Public Key Encryption	3	1, 2, 3, 7	T: Lecture and discussion
Analysis and Design			L: Reading [1] and research
of Encryption	14-3		papers
Algorithms			A: Midterm, Final and discussion
Algebraic Structures			
and Number Theory			
Key Distribution and	4	1, 7	T: Lecture and discussion
РКІ			L: Reading [2] and research
Analyze several key	21-3		papers
distribution schemes.			A: Midterm, Final and discussion
• PKI: digital			
certificates, Trust			
Models and Validity			
Models			
Cryptographic	5	1, 4, 7	T: Lectures and discussion
Protocols			L: Reading [3]
• Analysis and Design	28-3		A: Midterm, Final
of Cryptographic			
protocols			
Verification of	6	1, 4, 7	T: Lecture and discussion
Cryptographic			L: Reading [3] and research

Protocols	4-4		papers
 BAN Logic 			A: Midterm, Final and discussion
State Machine			
oT Systems	7	1, 4, 7	T: Lectures and discussion
• Analyze Lightweight			L: Reading research papers
algorithms and	11-4		A: Midterm, Final and discussion
protocols			
Cloud and Edge	8	1, 4, 7	T: Lecture and discussion
Computing	10.4		L: Reading research papers and
Cloud security	18-4		class notes
requirements			A: Midterm, Final and discussion
Analyze architectures			
AI in Cybersecurity	9	1, 5, 7	T: Lecture and discussion
• IDS, Firewall,			L: Reading research papers and
Malware Analysis and	25-4		class notes A: Final and discussion
Machine Learning			A: Final and discussion
Midterm Exam	10		
	10		
	2-5		
AI in Cybersecurity	11	1, 5, 7	T: Lecture, and discussion
Authorization and			L: Reading research papers and
Logic	9-5		class notes
	10		A: Final and discussion
Blockchain and Smart	12	1, 6	T: Lecture and discussion
Contracts	16-5		L: Reading [4] A: Final
 The main concepts and accurity 	10-5		A: Final
and security requirements			
Blockchain and Smart	13	1, 6, 7	T: Lecture and discussion
Contracts	10	1, 0, 7	L: Reading research papers and
Analyze applications	23-5		class notes
based on blockchain			A: Final and discussion
such as Metaverse.			
Students' Presentations	14	8	
	30-5		
Students' Presentations	15	8	
	6-6		
Final Exam	16		
	10		
	15-6		

17. Evaluation Methods and Course Requirements (Optional):

Opportunities to demonstrate achievement of the ILOs are provided through the following <u>assessment</u> <u>methods and requirements</u>:

There will be several assessment methods of evaluation the performance of the students such as attending and class participation, analyze papers, assignments; midterm, the final exam, presentation and writing a research paper.

18. Course Policies:

A- Attendance policies:

Deliberate abstention from attending 1901908 classes and any other similar acts will lead to student deprivation from the course according to the UJ regulations

B- Absences from exams and handing in assignments on time:

If you miss the midterm or the short test, then a makeup exam will not be provided unless you submit a valid absence excuse, within three days from the midterm, to your lecturer. This excuse must be signed and stamped from the UJ hospital in order to be valid. If your lecturer accepts the excuse then you will be able to take the makeup. You need to follow up the departmental announcements regarding the makeup date and time. Please note that the lecturer may either accept or reject your excuse based on UJ regulations

C- Health and safety procedures:

N/A

D- Honesty policy regarding cheating, plagiarism, misbehavior:

All students in this course must read the University policies on plagiarism and academic honesty http://registration.ju.edu.jo/RegRegulations/Forms/All_Regulations.aspx

E- Grading policy:

- Midterm Exam:	30%
- Assignments and/or class participants	10%
- Presentation and writing a research paper	20%
- Final Exam:	40%

F- Available university services that support achievement in the course:

N/A

G- Statement on Students with disabilities

Students with Disabilities: Students with disabilities who need special accommodations for this class are encouraged to meet with the instructor and/or their academic advisor as soon as possible. In order to receive accommodations for academic work in this course, students must inform the course instructor and/or their academic advisor, preferably in a written format, about their needs no later than the 4th week of classes.

19. Required equipment:

Class rooms with data shows

20. References:

Recommended books, materials, and media:

- 1. Cryptography and Network Security Principles and Practices, William Stallings, Pearson: Prentice Hall, 7th Edition, 2016.
- 2. Introduction to Public Key Infrastructure, Johannes A. Buchmann, Evangelos Karatsiolis, and Alexander Wiesmaier, 2013.
- 3. Protocols for Authentication and Key Establishment Colin Boyd and Anish Mathuria, 2003.
- 4. Mastering Bitcoin Programming the Open Blockchain, Andreas M. Antonopoulos, 2017
- 5. Network Security Essentials Applications and Standards, William Stallings, Pearson: Prentice Hall, Fourth Edition, 2010.
- 6. Applied Cryptography: Protocols, Algorithms, and Source Code in C, Bruce Schneier, Second Edition 1996.
- 7. Practical Cryptography, Niels Ferguson and Bruce Schneier, Wiley, 2003.

21. Additional information:

Course website: elearning.ju.edu.jo

Date: -----

Name of Course Coordinator:	Signature:
Head of curriculum committee/Departmen	t: Signature:
Head of Department: Si	gnature:
Head of curriculum committee/Faculty:	Signature:
Dean:Si	gnature:

<u>Copy to:</u> Head of Department Assistant Dean for Quality Assurance Course File